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Abstract. The paper addresses the a-posteriori error estimates of modelling

heat convection problems in a plate. It derives estimators which are

essentially local (of the size of the thickness of the plate). The estimator

is guaranteed to be an upper bound. The lower bound of the error is also

given. The asymptotic exactness of the estimator with respect to the

thickness of the plate and with respect to the order of the model is proven.

The adaptive procedure based on this a-posteriori error estimator is

proposed. Numerical examples are given.
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1. Introduction

During recent years a large progress has been achieved in the field of

the a posteriori error estimations and adaptive procedures in the finite

element method. The basic Ideas have been Introduced In [1-31 and since then

many error estimators appeared in the literature.

The basis of these estimators are essentially of the following types.

a) Residual estimators which employ the residuals of the finite

element solution. For more about these we refer among others to [1-13].

These estimators often are utilizing the complementary energy principles

(see e.g. [4,5,11,13]).

b) Flux-projection operators. These estimators are based on the

Idea of smoothing the fluxes (which are discontinuous) and

comparison with the fluxes computed from the original finite element solution.

For more we refer to 114-181.

c) Other categories include extrapolation estimators (see e.g. [191)

and Interpolation-error bounds, see e.g. (20-211.

In [22-24] the comparison of the performance of various major error

estimators and their robustness is given (see also there for an extensive

list of references).

The a posteriori error estimators are the basis of the adaptive

procedures. The Indicators (which are the error estimators In the single

elements) govern then the design of the mesh.

We underline that the error Is understood here as the difference

between the exact solution of the differential equation under consideration

and Its finite element approximation. The addressed differential equation

describes the particular model, say, of the plate and the computed error

characterizes the accuracy of the finite element method with respect to
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the exact solution of the selected plate model and not with respect to the

plate Itself. Nevertheless the (exact) solution of the model (plate or

shell) problem has to be understocd as the approximate solution of the

3-dimensional formulation.

Many models were proposed in the literature. We refer for example to

the survey [251. It is shown in [261 that various plate models could lead to

significantly different results especially in the neighborhood of the boundary

and in the presence of unsmooth input data. Hence the (exact) solution of the

model problem has to be understood as an approximation of the (exact) solution

of another "higher" problem.

In the example we mentioned, the "higher" problem is the three

dimensional model.

Similarly as in any approximate method a hierarchy of models has to be

available and be such that it allows to obtain the solution of the original

"higher" model with a priori given accuracy. Practically this means that an

a-posteriorl error estimator of the error of the model in comparison with the

exact solution of the higher model should exist and an adaptive procedure for

the optimal model selection should be available.

In practice the exact solution of the model is impossible to find

either. Hence we have to combine both errors--the error of the model and of

the finite element solution. In the adaptive procedure both errors have to

be controlled.

In contrast to the a posteriori error estimation techniques and adaptive

approaches of the finite element method as described briefly earlier, the a

posteriori error analysis of the models, and the problem of adaptive modelling

has not been addressed in the literature until now. In this paper we address

this problem for the solution of a model heat conduction problem in laminated
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plates. Let us mention that this problem has also other physical

interpretations. The theoretical results presented here are based on [271.

We concentrate in this paper on the error of the models, and its

adaptive selection. We will only consider the case when the exact solution

of the models is available. Hence we will assume that the error of the

finite element solution is negligible in comparison with the model error.

The paper is organized as follows. After introducing some notation and

the three-dimensional boundary value problem In Section 2, we put in Section

3 the hierarchical modelling in perspective with other approaches to derive

reduced models. In Section 4 we collect basic properties of the hierarchical

models from [27]. Section 5 contains the derivation of the a posteriori

estimator for the modelling error and demonstrates its asymptotic exactness

as d--O, as well as its spectral exactness as q--)w. In Section 6 we

illustrate our theory by a simple numerical example, demonstrating in

particular that our theoretical bounds of the effectivity indices are sharp.

While Section 6 dealt with a smooth solution, we investigate in Section 7 the

performance of our estimator in the presence of boundary layers. In Section 8

we address the adaptive selection of the model.

2. The basic notions and the problem formulation

By w c R2 we denote a bounded domain with a plecewlse smooth boundary

T. For any 0 < d we define

with the lateral boundary

r x -,~
and the faces
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R±= {(xl, x2 X3 )I(X1 ,X2 ) e W, x3 - + d/2}.

Often we will write x = (X X2), x = (XlX2P x3 (x,x).

As a model problem we will consider the problem

A u = 0 on Q,

(2.1) u = 0 on r,

D u = f on R+,
n

where D is the exterior unit normal derivative.
n

Let

H = {u e H1(0) 1 u = 0 on rn

and define the bilinear form B(.,.) : HxH-->'R and the functional

F(" ):H---.R

(2.2) B(u,u) = fVu-uvdx,

12

]-d d(2.3) F(u) = f(xl-x2)()(xlpx2,) + V(x 1x2, -- ))dx.

Then the weak form of (2.1) reads:

Find u e H such that

(2.4) B(u,u) = F(u), Vu e H.

There exists a unique solution of the problem (2.2)-(2.4) provided that

f L 2(w) (the assumption on f can be weakened). Further we define the

energy norm

2 2
(2.5) }9u{ll = B(u,u)

We remark that the problem (2.1)-(2.3) respectively (2.4) describes the

heat conduction problem in the plate Q. We assumed that the material of the
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plate is homogeneous; nevertheless the theory is valid with small char es

for the laminated plates, too (see [27]).

3. The modelling problem

The problem of the modelling means here a reduction of the three

dimensional problem (1.1) to a two dimensional one. There are three basic

types of such reductions (which are available not only for the heat

conduction problem but also for plates and shells). They are

1) Physical derivation,

2) Asymptotic derivation,

3) Hierarchical dimensional reduction.

Let us describe the main ideas of these three approaches.

1) Physical derivation

The problem (2.1) is first written in the form

(3.1a) Vu=o in rI

(3.1b) div o- in I 0

(3.1c) -.n = ' on R±

(3.1d) u= 0 on r.

Here (r defined in (3.1a) has the meaning of fluxes, (3.1b) and (3.1c) have

the meaning of heat balance. For small d we assume that the flux (3 is

negligible so that the temperature u through the thickness is constant.

Then the heat bqalance through the thickness reads

d div (o ,V2) = -2f.

This leads to

(3.2a) -A&u - 2f(x) in 0,
X d

(3.2b) u = 0 on T.
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The second phase is to derive an improved model. We will follow the

reasoning given in [29] (when applied to our problem).

Assume that the solution w of (3.2) Is available and denote It by uO.

Then the corresponding flux is

(3.3) (0-(0Q, ) = VuO.
V2

The heat balance equation in fl now -#ads

(3.4) div..a + a•3 = 0

x aX3

which suggests

(3.5) 803 _ diva-
(3X3 x

(3.6) 3 = -x 3 div o= -x 3Au = 2fx 3 "

o Cx) satisfies then the originally prescribed boundary condition

(3,7) 0r3(xlx 2 , ±d) = f

and the Improved flux is now (o-,,r2,r3). It satisfies the balance through

the thickness and the boundary condition at x 3 = ±d/2. Now using

(3.8) au
aX3 -3

we get the improved solution u

(3.) ~x x) = 1 2
(3.9) UN l'X2', ) f(x 1 ,X 2 )x 3 + O(XlX2).

Taking the heat balance through the thickness we get

dAu = d 3 Af +2f + d A-0 = 0
12- x x

and hence

(3.10) -d A 2f + 1 d3 Af in w.
12 x
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The boundary condition at r has to be understood in a weak sense

f u(xx 2 ,x 3 ) dx3 = 0 for x. 2 *7 which yields

*(x 1'x 2) = -1 d f(x 1,x 2 ), (x'x2) C-2 1-21' 2

Now we can continue in the same vein and construct higher order approximations

(in d) in addition to u in (3.9).

The approaches of this type are used very often in Lie engineering

literature. Nevertheless their relations to the original problems are not

direct. In fact, in [30] p. 33 related to theories of this type for the

plate problems one finds the statement "the refined theories do not yield

reliable information from the standpoint of 3 dimensional problems.

Nevertheless, these theories specify the principal stress of the plate".

2. Asymptotic derivation. For more about asymptotic analysis we refer

e.g. to [311. We will present here only the main idea.

First the problem (2.1) is scaled to unit thickness d = 1 by the

substitution =(xlx)' )2 = d'-. Then the (2.1) takes the form

2
(3.11a) -A u d 0

with the boundary condition

18u -_ffr• '1
(3.11b) Idau f for +3

(3.11c) u = 0 for e

We look for a solution in the form

(3.12) u1C ) = 1u 0 (g) + du ()+d 3 (2) +

Inserting (3.12) into (3.11) and matching powers of d, we get a sequence of
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(j)

differential equations for u(. The boundary condition (3.11c) at r is

generally not satisfied by (3.12) and must be accounted for by additional

boundary layers of three-dimensional character.

The main problem with this and the previous approach is that they lead

ultimately to the differentiation of the data f. It is well known that for

unsmooth f and fixed d an increase of the number of terms in (3.12)

leads to a decre).-e of the accuracy.

It is a,-.o obvious that neither one of the previous two methods creates

a set (hierarchy) of models by which the exact solution of the three

dimensional problem can be approached to any prescribed accuracy at fixed.

positive thickness. Hence this type of modelling is not usable for our

purposes.

3. The hierarchic modelling.

Denote by

(3.13) P= . w, 1 5 i 5 n}

a collection of n domains with piecewise smooth boundaries 8c.w such that1

n
i n ci.= 0 if I * j and (A= U W (P could be for example aJ •=1j

triangulation of w).

For a vector of nonnegative integers

(3.14) qn = (q ' ... qn)' q1  0

and a sequence of linearly independent functions 4E H1 (-1,1) we define

the space

q,

(3.15) S(Pq): = {u e H Juli u i W Ox)Wj ' E • P1

J=o

Then S(P,q) c H and the (Pq)-model is the boundary value problem:

9



Find u(?,q) E S(2,q) such that

(3.16) B(u(C,q),v) - F(v), Vv e S(T,q).

By this we obtain a system of elliptic equations which describe the

(P, q)-model.

The essential question is how to select the functions This problem

was analyzed in [281, (33]. For the laminated plates an analogous approach

can be used. In [281, (331 it has been shown that a good choice is (because

of the symmetry in x3 of the solution)

(3.17) to(i) = P2j(00,

Ft(q) is the t-th Legendre polynomial. In [33] the optimal choices of V1

in dependence on various optimallty criteria were also analyzed.

4. The basic properties of the hierarchic modelling

Here we will address only the system (3.17) of functions and we will

deal here only with the energy norm |ul2 = B(u,u). In [27] we analyzed also

other norms. Denoting by u the exact solution and by u(P,q) the exact

solution of the (P,q)-model, we define the modelling error

e(P,q) = u-u(1',q)

and will be interested in the a-posteriori estimation of Mel. In (27] the

following theorem has been proven.

Theorem 4.1. Let f e H2Ncw) and have compact support in w. Then for

o < d -5,A
Ie(?,q)j < C(A)d2N+1/2 11H2N(M

where

N = min qI

and Hk(w) "s the usual Sobolev space. The constant C depends on A and

w, but Is Independent of d and f.
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Let us underline that the assumption about the compact support of f is

almost essential. It can be weakened but certain boundary compatibility

conditions have to be satisfied. Without these conditions the solution u

has a boundary layer and Theorem 4.1 is not valid; the overall accuracy as

d--)O is at best d1/2 in general. Nevertheless, in [34] it is shown that

the low accuracy is confined only to a small neighborhood of y. In

addition, the full accuracy of d2N+1/2 can be recovered by utilizing simul-

taneously different model orders a. in the interior and near 7.

Theorem 4.2. Assume that f E and 0 < d : A. Let T = {c VY

where w, = {(x, X2 ) e o I dist (x ,x 2 ) > t}, 2 = \w 1 and let ql = N,

q2= H M N. Then, for t > C1 NdItndl and M(N,d) suitable,

JHe{P,q)M S C(A)d2N+1/2 11fHN

Here C depends only on the Llpschitz constant of v.

Finally we have Theorem 4.3 which guarantees that we can select a

sequence of models, the solution of which converges to the solution of the

three dimensional problem (2.3). We have

Theorem 4.3. Let d > 0 fixed, f e L 2 ). Then Ile(P,q)W--O as N =

min q I -- w.

The Introduced hierarchy is a large family of models which allows to

select the models having the following properties in the major special cases

a) If f is smooth and d is small then the particular model leads to

an error which Is the smallest possible with respect to d, i.e. we have

asymptotic convergence with respect to d--+O with maximal possible rate,

regardless of compatibility conditions violated by the data.

b) In all cases, for any error tolerance there exists a model in the

II



family which leads to the error in the prescribed range..

c) As will be seen later an effective a-posteriori error estimator of

the modelling error exists and based on it an adaptive model selection

procedure can be designed.

The following theorem plays an important role in the theoretical basis of

the study of the adaptive hierarchal modelling.

Theorem 4.4. For every (P,q) we have

d/2

I e(xix2,x3) dx3 = 0 a.e xe w
-d/2

where we denoted e(?,q) = e.

We mention that in fact we have additional properties of e which were

utilized in [27].

5. The a-posteriori error estimation

Here we will give some basic results from [271 related to the

a-posteriori estimation of the modelling error, when measured in the energy

norm. The estimates in L 2-norm are also given in [27]. The a-posteriori

-rror estimation will be basis for the adaptive modelling . For simplicity

we will present here the results for P = {4} i.e. we assume that we will not

pa.-tition w and that q, = qo' i = 1,..., n.

In the sections 7 and 8, we will apply the results for the general case.

Let 0 < P(xIx 2 ) e W I'mwM and

(5.1) = max 1 9 2
1=1,2 x I/ L'(W)

We will be interested in the error measured in the weighted energy norm

12



(5.2) IeN 2 fiVe 12  dxdx2dx 3 .

A typical choice is for example

(5.3) 4p(x0,xO) = exp a. (Hx -x 01 + (x0-x ()
1 2 P 1 1x 2-x2

where p e (0,1) and 0 < a < 2" We can, of course, use other choices of (p,

too. Assume now that we have computed the exact solution u(q) of the model.

Then with

(5.4) r(x = f 8u(q) (Xl'x d/2)

aY n 2'

we define the error estimator e (u(q))

(5.5) tq(u(q))= dq3 r 2 (fr2dx 1dx2]
2

To assess the quality of this estimator we will define the effectivity

Index

•q(u(q}))

(5.6) 
6 (U(q)) = 9 u-uM q))

q lu-u(q)MI

We will say that 8 is an upper (lower) estimator if e > 1 (e < 1,

respectively). Further we will call 9 (C1,K 2 ) proper with respect to a

class T of data f, if

(5.7) 0 S <q 5 K2 < W

holds for all data f e T.

The estimator q is asymptotically resp. spectrally exact on the setq

of the data Td resp. TQ if 6q -l as d---O+ resp. 8q -f as

q
q--=.

13



Let us remark that as usual the asymptotic exactness requires

considerably stricter assumptions on the data than the properness. Further,

we underline that the quality of the estimators has to be understood relative

to a class of data.

Let us finally remark that the weight can rapidly change in comparison

with d (see (5.3)). This makes the estimator very local and It can be used

as basis of the adaptive modelling. In [27] we have proven the following

theorem

Theorem 5. 1.

a) If f e T =L(2) then

(5.8) e • (1- Y dQ) (1 + i dQ(1 + ý2 dQ))-112

b) If f e T := {fl 1rMl,•I Rrlo,:5 P < c} (where II1r!iI 2

Vk IVrI p22 dxldx2 ) then

[ 3 d2 ]

(5. 9 ) S + d 2+Q2 1/2

1 2 (2q+3)2_4 +

If, moreover, ( m 1, then Q = 0 and the factor 3/2 in (5.9) can be

replaced by 1/2.

Theorem 5.1 shows that the estimator Is K1 , x2  proper with known K, and

K2" If we select the exponential weight i given in (5.3) then the

estimator is asymptotically exact on T .

We see from the theorem that we get an upper estimator for a large class

of data, namely we have only to assume that f e L2(w). On the other hand, to

get 9 - I we need more smoothness of the solution, for example that no

boundary layer exists (this can be achieved for example if f is smooth and

has compact support similarly as in Theorem 4.1). Using in (5.8) and (5.9)

14



Q we get a practically local estimator of high quality.

Theorem 5.1 concentrates on the case when d--)O. Let us now formulate

the theorem when d is fixed and q--)w. In [27] we have proven

Theorem 5.2.

1-C
a) If f e T with O = •(q/d)-, c > 0, • independent of d,q then

2c 1/2,

O(q) [1 + C I('] ] 2 , 1/ = 1,2

where C1  is independent of q and d.

b) Let Ak' Vk(Xlx 2 ) denote the k-th eigenpair of -A in w with

TOl•= 0. Let further r(xl,x 2 ) = pk Wk (xlx 2 ) and assume f is such

k

that p1 * 0 and

d' 2 ;kk) 1  1Pk i: I
1 + d2- k -S (Vf - 1) (1 - q

k +2 1p1 1

for some c > 0. Then

6(q) a (1 - C2 Q)(M + 2C2 Q(i + 2C2Q))-1/2

where Q is as in (5.1) and
d

,2 - {(2q+3) 2 -4}-)

and 8 is the best constant in
II1kO'llL•u : ek.

In theorems 5.1 and 5.2 we analyzed only the error in energy norm.

Nevertheless, similar results can also be obtained for the L -norm estimator

derived in (271.

6. A simple example

The results we have shown in the previous sections hold also in the case

that w = (-1,1). In the example here we use Ql = w x (-d/2, d/2) and

f = cos x Then obviously

2 1.
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ch( xV

(6.1) U(xx2) = cos ( x ) 2
(sh(- x))N

In this case we can compute (by computer algebra) the effectivity Index 8q

explicitly and get

(6.2) 62 _ 1 + _2+ Old
q 1ejl2 mq

The coefficients m are listed In the Table 6.1.
q

Table 6.1. The coefficients m In (6.2)q

*q 240 360 936 I 17681-2856 4200 5800

We see that in fact the estimator Is an upper one and that It Is

asymptotically exact.

In the Table 6.2 we report the values of 6 computed directly. Theq

finite element method with very fine mesh and high degree of elements p was

used to ensure that we obtained an accurate solution of the model. We

selected d = I and d = 2, I.e. a very large thickness to show the

effectiveness of the estimator. In the Table 6.7 we also report

•2 + 1 +!d2t

m

d2

q

i.e. we neglected the term 0(d4) in (6.2).

Finally we list the estimates based on (5.8) (5.9). In our case r(x) =

C cos •. x1 and hence B = 2". In addition we report the relative energy error

In %
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Table 6.2. The effectivity indices and relative
errors for large d.

q O(q) I Upper b Lower b heII%

0 1.0200 1.0065 1.32 1 40.62

1 1.01324 1.0043 1.085 1 1.057

2 1.0052 1.0033 1.040 1 0.0081

q I 6(q) I •(q) Upper b Lower b jjejIW

0 1.0742 1.025 1.626 1 64.51
d=2

1 1.0482 1.017 1.306 1 6.21

2 1.0203 1.013 1.153 1 6.178

mt
Realize that O(q )/O(q ) -• . This is the effect of the spectral1+1 1 m+1

accuracy of the error estimator. The same effect is seen also in the

improvement of the upper bound. This also shows that the term O(d )

neglected In (6.2) decreases as q increases.

Let us underline that In the described example the thickness Is no

small (in fact when d = 2 then 0 is a square) and there is now boundary

layer In the solution.

7. The problem In the presence of a boundary layer

Let us consider the case f = 1 where the solution has a boundary layer.

Hence f belongs to the class T with a large A. Table 7. 1 shows the

effectivity index and the relative error for different q.

17



Table 7.1 The effectivity index and the error for the
solution with the boundary layer

d d=0.2 d=1 d=2

q 0e J Ielix 11% Ilejl/. [ 6 Ilell

0 1.011 9.88 1.063 42.53 1.140 87.65

1 1.46 0.505 1.463 5.14 1.454 12.291

2 1.778 0.197 1.778 2.01 1.778 4.736

3 1.933 0.112 1.933 1.14 1.933 2.681

4 1.911 0.079 1.908 0.803 1.912 1.883

5 1.760 0.064 1.743 0.655 1.760 1.529

6 1.554 0.056 1.511 0.587 1.554 1.358

7 1.348 0.053 1.292 0.557 1.348 1.269

We see that the effectivity index is growing with the value q, achieves

maximum at q z 3 and then decreases. It Is also interesting that the

effectivity Index is very Insensitive to the thickness d. The behavior of

6 can be explained as a combination of the Influence of large g and the

spectral accuracy.

Let us now divide w into subdomains. In our case w = (-1,1) and we

will divide w Into subdomains II = (x lx I), I = 1.... 6 and will assume

f= - , ftP = I on I,, @I = 0 on I, I * j. This of course Is not exactly

in our framework of assumptions. Nevertheless we can understand this

selection of V as an approximation. Hence we will speak about indicators

instead of estimators. Let us consider the 6 domains defined by the

sequence (xI) = (-1, -0.75, -0.50, 0.0, 0.50, 0.75, 1.00}. The table 7.2

shows the indicators In these domains with uniform q. Because of symmetry we

report the indicators on first three subdomains only.

18



Table 7.2. The error indicators for 6 domains

d=0.2 "
JoI q=l q=2 1

1 0.576 -1 0.274 -1

2 0.359 -5 0.126 -5

3 0.224 -9 0.693 -9

We clearly see that the boundary layer is well indicated.

In Table 7.3 we show the value of the estimator In the first

subdomain 11 as function of q

Table 7.3. The error indicators in the subdomain 11

C(q)10.5761-i 10.2741-1 10.1687-1 10.1173-1 10.8768-2 0.6875-2 0.5578-2

8 9

0.4644-2 0.3945-2

Figure 5.1 shows the graph of the function e(q). We see O(q) z q-1

1 < 1 < 2. Let us mention that this rate is due to the combined effect of

singularity in the corner (of order r 2g r) and the boundary layer.

Table 7.2 indicates that it is advantageous to use nonuniform q. In

Tables 7.4a and b we show the error for different distributions of q for

sets of 18 and 20 subdomains. Because of symmetry we only list q in the

first 9 (10) domains.

We used the following two sets of subdomains defined by the meshes
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a) 18 subdomains.

-1.000, -0.990, -0.975 -0.950 -0.925 -0.900 -0.850 -0.750

-0.500 0.00,

b) 20 subdomains

-1.000, -0.998 -0.990 -0.975 -0.950 -0.925 -0.900 -0.850

-0.750 -0.500 0.00

The thickness d = 0.2 and f = 1. We report in the Table 7.4a the error,

18

the effectivity index and W =Y (qe + 1) which (crudely) estimates the

e=1

work.

Table 7.4a. The distribution of q for 18 subdomains

case 8
1 2 3 4 5 6 7 8 10

1 2 3 3 4 4 5 5 6 2 3

2 2 3 3 3 3 3 3 3 2 3

3 2 2 2 2 2 2 2 2 2 3

4 2 2 2 2 2 2 2 2 2 3

5 2 2 1 2 1 2 1 2 2 3

6 1 1 1 1 1 1 1 1 2 3

7 1 1 1 1 1 1 1 1 2 3

8 1 1 1 1 1 1 1 1 2 3

9 1 1 1 1 1 1 1 1 2 3

Error % 0.201 0.126 0.146 0.106 0.129 0.0947 0.110 0.089 0.197 0.112

6 1.75 1.74 1.54 1.52 1.32 1.31 1.12 1.13 1.78 1.93

W23 25 24 26 25 27 27 28 27 36
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The Table 7.4b shows analogous results for the case of 20 subdomains.

The first two subdomains are creating together the first subdomain in the

case of 18 elements. This is indicated by a dashed line in the Table 7.4b.

Table 7.4b. The distributions of q for 20 domains

case 1 2 3 4 5 6 7 81 2 4I

1 2 3 4 5 6 6 7 7

2 2 3 4 5 5 6 5 6

3 2 3 3 3 3 3 3 3

4 2 2 2 2 2 2 2 2

5 2 2 2 2 2 2 2 2

6 2 2 2 2 2 2 2 2

7 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1

Error % 0.201 0.126 0.106 0.094 0.093 0.089 0.92 0.088

a 1.75 1.74 1.52 1.31 1.21 1.13 1.11 1.04

W 23 25 26 27 27.5 28 28 28.5

10

1 (ql+l)+(qi+1) 10

In the Table 7.4b we define f = + I (q, + 1) to make a
2=1

comparison possible. If the degrees in w1 and w2 are the same then we

obtain identical results as in Table 7.4a.

We-see from the Tables 7.4a,b that the optimal q distribution depends

on the error we wish to achieve and on the subdomains. The main error is in
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the area of the boundary layer. Comparing the cases 6 and 7 in Table 7.4b

we see that the case 6 leads to a smaller error than case 7. This underlines

the importance of the right q distribution.

We have shown in previous sections that the error estimator is not

influenced too much by errors on the subdomains which are not too close to

the given one (in the scale of d).

To show the sensitivity of the indicators with respect to the

q-distribution, let us show in Table 7.5 the Indicators in the subdomains

W3 ,w4 , w. (in the case of 18 subdomains) for some cases listed in Table 7.4a.

Table 7.5. Error estimators for the q distribution

given in Table 7.4

Case g3 94 95

1 0.104-2 0.782-3 0.867-3

2 0.162-2 0.719-3 0.866-3

4 0.163-2 0.719-3 0.866-3

6 0.163-2 0.719-3 0.866-3

9 0.105-2 0.871-3 0.487-3

Estimators e6 - g9 were completely independent of the q-distribution.

8. Problem of adaptive modellinA

The goal of adaptive modelling is to design the distribution of q so

that for given error tolerance the work is minimal. The quantitative

characterization of the work could be different. Here we will use the crude

measure we introduced in the Section 7, namely W = 2(qi + 1).

We will show one of the many possible adaptive strategies in two examples.

22



Example 1. Let us consider the problem we discussed in the previous section,

namely f = I and d = 0.2. We will use the mesh which divides the domain

into 18 subdomains. The target relativc accuracy is T = 0.1%.

First we solve the problem with q = 1 (uniform) and compute the

error indicators on the particular domains. We single out the subdomains

where the error is not necessarily made smaller. The principle is to add the
2

smallest indicators so that their error is 1- B(u,u). We conclude that
1 5

q has to be increased on 8 subdomains, namely w1 - 4 and '15 - '18- The

goal is to increase q on these domains so that we obtain the error in the

prescribed tolerance. Using the fact that the indicator on a domain W is

not essentially influenced by the indicators on the other subdomains, we will

"freeze" the solution on all subdomains except the one under consideration.

By this procedure we obtain the following distribution of q:

9,6,4,2,1,1,1,1,1 (Because of the symmetry we report here and in what follows

only the subdomains for x < 0.) By this distribution we achieved the

relative error 0.077%. Comparing this distribution with Table 7.4a we see

that the used strategy yielded the right distribution.

Example 2. Here we assume that

f 2x
(x2+c2)4

and that d = 0.2, =0.1.

We will use 10 subdomains characterized by the mesh x= -1, -0.8,

-0.6, -0.4, -0.2, -0.0, 0.2, 0.4, 0.6, 0.8, 1.0, with the target accuracy

0.1%. In this case the main error is in the place where the solution is

unsmooth, i.e. in the middle (x = 0) of the domain. The adaptive procedure

gave the following distribution of qI : 1, 1, 1, 2, 3. The relative energy

error achieved was 0.0743%.
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